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Electrons and vortex lines in He 11, I. 
Brownian motion theory of capture and escape? 

J McCauley Jr:ll and L Onsagera 
:Department of Physics, Yale University. New Haven, Connecticut 06520, USA 
§Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA 

Received 8 August 1974 

Abstract. The Brownian motion theory of capture and escape, in the form given by L 
Onsager in 1934, is applied to the interaction of electrons and vortex lines in He 11. Precise 
results are obtained to lowest order in the external field strength and certain misconceptions 
are clarified, laying the foundation for a reliable analysis of the available experimental data. 

1. Introduction 

A question which has fascinated physicists over a span of many years is that of the 
fundamental nature of superfluid helium. Due to the complexity of the problem, most 
theoretical discussions have by necessity been of a formal or qualitative nature. It is 
therefore of interest to apply simple concepts and push them quantitatively to the limits 
of their applicability in the hope that we may uncover new directions for research. 

One method which has been used with great susccess by experimentalists in the 
field is the study of ions in He 11. More specifically, the study of capture and release 
of ions by quantized vortices. These studies have occupied an important frontier of 
He I1 research, even playing an important role in questions of critical velocities and 
vortex nucleation (ie, nucleation of vortex rings by ions). The problem of capture and 
release of negative ions by vortex lines was first studied by Donnelly and Roberts (1969 
and Donnelly 1967) and although they chose for their investigation the correct tool 
(Brownian motion theory), they did not derive results of sufficient strength to permit 
one to draw firm conclusions as to the limits of applicability of the basic theoretical 
assumptions. The criticism of their results may be summarized as follows : 

(i) the capture cross section given by Donnelly and Roberts contains two arbitrary 
parameters left undetermined by theory ; and 

(ii) the resulting trapping lifetime, based upon a generalization of Kramers’ method 
of escape over a potential barrier, cannot be valid except in the asymptotic limit E + cc 
( E  = external field strength in V cm-‘) whereas the available experimental data will be 
shown to fall within the domain of validity of the limit E + 0. 

Thus, our object is to derive the kinetic rate coefficients for capture and release in a 
‘weak-field approximation’ of sufficiently large domain of validity that one can draw 
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strong conclusions concerning the basic hypotheses. In order to begin this task, we 
assume the following : 

(a) the bubble model of an electron in 4He (Jortner er a1 1965, Hiroike er al 1965, 
see also Careri 1961 and Ferrell 1956, 1957); 

(b) the semi-classical model of a He I1 vortex (Onsager 1949, Feynman 1955); 
(c) the hydrodynamic interaction between a bubble and a static vortex line with 

classical core structure ; this interaction having been known to classical physicists 
(Thomson 1873) but appearing first in the present context in the work of Donnelly (1967), 
and 

(d) Brownian motion theory in the Einstein-Smoluchowski approximation 
(Chandrasekhar 1943). 

Qualitatively, these are the assumptions of Donnelly and Roberts. Our treatment 
of ( d )  will, however, differ in an important respect: we will apply a general theory of 
capture and release developed by Onsager in 1934 and by means of this general formalism 
a number of misconceptions will be corrected (Kramers’ theory of escape(Chandrasekhar 
1943, Kramers 1940) can be seen as an approximation of this theory in the limit E --* CO 

in two or more dimensions). 
In the present communication, we formulate and solve the two relevant boundary 

value problems. In 11, we discuss the comparison with the experimental data. The third 
paper, although by far the most speculative, is perhaps of the greatest interest. Based 
upon the results of I and 11, we will show the necessity for considering the uncertainty 
in position of the vortex line due to thermal fluctuations and thereby suggest a resolution 
of a discrepancy concerning the temperature dependence of the trapping lifetime 
(McCauley 1974) (we also observe that the Heisenberg principle may play an important 
role in defining the ‘core’ of the quantum line, thus breaking with all previous treatments 
of the vortex core in terms of classical models). 

2. Formulation of the boundary-value problems 

We consider distributions of n, free electron-bubbles, a lattice of n, vortex lines and v 
trapped electron-bubbles (all per unit area-we consider only the two-dimensional 
problem) and assume the kinetic equation (Onsager 1934) 

dn, dv - = - - -  - KAv-Anin, 
dt dt 

where A is the kinetic coefficient for capture of a bubble by a vortex line and P = KA 
is the escape rate. The capture cross section and trapping lifetime are known once K and 
A are given by some microscopic theory. For 1 K 6 T 6 2 K, the dominant excitations 
are rotons with the roton density being sufficiently large that one may apply Brownian 
motion theory : we assume the roton-bubble collisions to be sufficiently frequent that the 
bubble may be treated as if in ‘local thermodynamic equilibrium’ with the roton gas 
at temperature T in which case the bubble has a probability distribution in velocity 
which is Gaussian with mean value (Chandrasekhar 1943) 

(2) 

wherefis the probability density to find the Brownian particle at (r ,  t ) ,  w is the mobility 
( D  = okT) and 4 the potential energy. Since we consider a vortex at the origin (polar 

- u(r, t )  = DV lnf(r, t )  + oV&r) 
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coordinates (r, e)) with external field along the x axis, we have 4 = &+ 46 where $v is 
the ion-vortex potential energy and 4c = -eEx. We have, then, the following con- 
tinuity equation (Onsager 1934): 

(3) af 
at 

-- = v .  fv 

or, with U = 4/kT,  

1 df 
D at 
_ -  = V . e-"Vf e". (4) 

Since, for weak fields, a Brownian particle may ,e considered captured wherever 
Iu,j 5 f (Onsager 1934), we have 

v = J- f d2r 
* < q  

where q is the capture radius defined by Iu,I = 2c/qz = 4. Thus, 

( 5 )  

where j = D e-"V e y  is the flux of ions into the vortex. K and A may be obtained by 
the solution of any two of the following three steady-flow boundary-value problems 
(Onsager 1934) : 

(i) the capture problem : 

J 
D V , e-"Vf e" = -4, 

f + ninv a s r + m .  
(7) 

'6' is the two-dimensional delta function and J the current ( J  = dv/dt) and since f 
represents the density of free particles we have 

dv 
dt - = Anin, = jrr d e  (8) 

where the capture cross section is defined by 

Aninv A -- Q=- - 
lj,l WE' 

(ii) The escape problem: we again solve (7) subject to 

f - 0  a s r + m  

so that f represents a density of trapped particles (with - J = Pv), 

the trapping lifetime being given by 

z = 1/P. 
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(iii) The steady-state problem : 

(uniform flow from a source at x = - CO to a sink at x = + CO). We will make the follow- 
ing useful approximation : for r 5 q we may write (Onsager 1934) : 

so that 

v(E) N a(E)ninvv(0) 

where 

v(0) = J,6;-uvd2r 

is the zero-field bound-state partition function. Since dv/dt = -dni/dt = 0 requires 
K A v  = Aninv (detailed balance condition), we have, whenever A # 0, 

Thus, when A(E) # 0, the steady state may be represented as a superposition of two 
steady-flow source-sink problems defined by (i) and (ii), with detailed balancing imposed. 

Except for the purpose of calculating v(O), it is sufficient to consider the ion-vortex 
potential energy in the approximate form (Donnelly 1967, Pratt 1967) 

2c 
u v ' v  -- 

r2 

valid for r >> R >> a ( R  - 16 A is the bubble radius and a 2 2 A the vortex core para- 
meter). The ion-vortex potential, first considered by Donnelly (1967), was given cor- 
rectly by Thomson (1873), the force constant being 

3 p ,  K 2  4 2C = - - - -nR3 
2 2 k T 3  

where ps is the superfluid density and U = h/m (m = 4He atom's mass. The correction 
represented by the 312 factor has been mentioned by Pratt (1967) who uncovered it in 
Thomson (1873)) We will also use the notation 

U, = -2px:  

with 

28 = eE/kT. (17) 

The small parameter upon which our perturbation theory will be based is 

where q = 2JC is the capture radius, the weak-field approximation being defined by 
/I4 << 1. (We have set R = 16A to obtain (18)). 
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At this point, we can state our objection to Donnelly and Roberts’ trapping lifetime 
(rather, to its mis-application). Donnelly and Roberts (1969, Donnelly 1967) solved 
boundary value problem (ii) by a generalization of Kramers’ method of escape over a 
potential barrier (Chandrasekhar 1943. Kramers 1940). This method, while exact in one 
dimension, is valid in two or more dimensions only in a certain limit (McCauley 1972). 
Donnelly and Roberts used the approximation 

where J 7 3c j ,  dy is evaluated at the saddle-point of the potential U, 2Ay being the ‘width’ 
of this saddle-point. I t  is obvious that (19) can only be valid whenj  is strongly directed 
along the x axis, ie in the asymptotic limit E -+ E, whereas for the case << 1 the flow 
is almost symmetric and the saddle-point is irrelevant. Now, we need a result for P 
which is valid near E = 0. But P(0) as given by (19) is finite and this contradicts the 
equation upon which (9) is based, for with E = 0 we have 

where 

1 
Jc  (e”’/r) dr‘  

P c c  J x  

But 

J’: :dr = x 

so that P(0) = 0 and ~ ( 0 )  = x. We will see in I1 that this divergence of the lifetime as 
E -+ 0 is actually suggested by the experimental data, although it has heretofore been 
misinterpreted (Pratt 1967, Pratt and Zimmerman 1969). Finally, the result of Donnelly 
and Roberts may be relevant to ion-vortex ring experiments since these are often 
performed in the kilovolt range. For the case of ions and vortex lines, however, one 
generally finds E 5 100 V cm-’ and we will show that these results can be analysed by 
consideration of only the lowest-order approximation in the field strength. 

3. The perturbation series 

Onsager and Liu (1965), in a discussion of the dissociation of weak electrolytes, have 
suggested a perturbation scheme which, applied to our steady-state problem, may be 
stated as follows : 

f = ge-”’  

( A + V U , .  V)g  = V U , .  ( V g  +gVu,)  (A  V2).  

We then assume an expansion for g in powers of the ion--vortex force constant C (the 
dimensionless parameter is really p2C) 

g = g,+g, + . . . (23) 
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so that 

(A + VU,. V)go = 0 

(A + VU,. V)g, = VU,. (Vgo +goVu,) = VU, . Vuv 

(go = 1 where we take ninv = 1 for convenience). go represents uniform density and 
flow from a source at x = -cc to a sink at x = +cc and g ,  represents the perturbation 
due to addition of a vortex at the origin. The resulting g , ,  however, does not behave 
correctly as r --t 0 (we must have g + constant as r -, 0 whereas the result given by (23) 
diverges logarithmically). This minor defect may be remedied as follows : 

Setting 

f = ge-”‘, (26) 

we assume an expansion for g as a power series in p (the dimensionless constant is PJC) 

g = g , + g , +  . . .  
so that 

Ago+V . goVu, = 0 

Ag+ V . glVu, = VU,. (Vgo +goVu,). 

(27) yields a good approximation near the vortex but our g does not satisfy the boundary 
condition at infinity. However, we can match f and j ,  = D e-”V,f e“ as given by (21) 
and (26) on some suitable boundary, a circle of radius rm being sufficient so long as 
pq << 1. We note that the right-hand side of (29) vanishes since go = e-”V. 

For the capture problem, the following ‘outer’ expansion is convenient : 

f =  f o + f , +  . . .  

( A + V U , .  V)fo = 0 ( f o  = 1) 

(A+VU, .V)f ,  = - V .  f o V U v =  -AM, 

while the ‘inner’ expansion is again represented by (27)-(29). The perturbation fi here 
represents the addition of a sink at the origin and for the inner region we must choose 
go = 0 since for E = 0 the boundary value problem does not exist. 

Although intuitively appealing, these power series expansions in the force constants 
do not exist. g ,  andf,, rather, are either O(pq In p4)2 or O(ln f l y ) -  to lowest order in 
/3q (McCauley 1972). Therefore, the calculation of higher-order corrections is impossible 
and the validity of the lowest-order approximation may be called into question. For- 
tunately, there exists a generalization of the above procedure which yields results close 
to those of the above (incorrect) procedure, to lowest order in pq. We will now outline 
the correct procedure. 

V.e-“Vfe” = 0, (33) 
and setting 
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where 

4c2  4 c  
V,  = $(VU,) - +A., = - + - 

r6 r4 

and 

4pc cos 0 
r3  

VOc = +vu,. vu, = - 

I t  will be convenient to write 

v,, = h( r )  

where, for the present, A is assumed arbitrary (A will later be taken to be either P’C or 
&IC, depending upon our choice of dimensionless variable). 

Consider 

( A - P 2 -  V,)$o = 0, (36) 

which is separable in cylindrical coordinates and has the useful property that 4 and do 
may be assigned the same boundary condition and also have the same form near the 
origin (ie for both (35) and (36) we have ( A -  p2)4 - 0 as r + cc and (A-  K)4 - 0 for 
r -, 0). The ‘cross-term’ V,, in (35) is of the following form : V,, is dominated by V,  for 
small r,  by P2 for large r and within the intermediate region Vac, V,  and p’ are all domin- 
ated by thermal diffusion so long as the external field is weak (pq << 1). For either large 
or small r,  then, we expect that there may exist some representation for 4 in which V,, 
may be considered a perturbation. This will be useful because solutions of (36) are in 
practice obtainable, although perhaps at the cost of considerable labour. Noting that 
the Green function K(r ,  p) defined by 

(A - P 2  - V,)K = -6  (37) 

is expressible in the form 

where (with solutions of (36) expressed as a cosine series) F, is the radial solution regular 
at the origin, G, is the radial solution regular at infinity, r ,  = min(r,p) and 
r ,  = max(r, p) (Ince 1956). Solutions of (35) may then be written in the form 

where 4 and 4o satisfy the same boundary conditions at infinity, and we may consider 
the Neumann series 

n- 1 

4 = c ( -mY4o+( -m! ) ”4  
j =  0 

(making use of an obvious shorthand notation) which converges whenever 

lim (-;.Kq)”4 = 0 
n -a 

(Whittaker and Watson 1963). Due to the dependence of K upon E. the problem of 
estimating the radius of convergence of (40) is non-trivial, but even in the event that the 
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radius of convergence should vanish, we observe that (40) may still be useful as an 
asymptotic development for 4 in the limit E. -, 0. We now turn to the generalization of 
the method of Onsager and Liu, based upon the approximation 

which is useful whenever 1 << 1 .  

A = (l/Z)(2/dZ)Z(d/dZ)). Then 
(i) ‘Outer’ region. Set Z = pi ,  1 = P2C (we will now use the notation 

(A - 1 -).’U - j . t ’ 2 ) 4  = h4 (43) 

(A - 1 - - ) .~ ’ )4~  = 0 (44) 

( A -  1 - / I ’ U ~  -E.v~)K = -6 (45) 

( A -  1)4 = ( E . ’ ~ , + j . ~ 2 + ~ ) ( 4 O - ~ K q 4 o +  . . .) 
where U ,  = 4/Z6, V~ = 4/Z4 and q = -4cos 8 1 2 ~ .  Then, by (42), 

(46) 
where the right-hand side, although not a power series, may be considered a perturbation 
series in the vortex potential. In practice, we will obtain the lowest approximation by 
assuming 4 5 g50 + 4 where 

(A-  1)40 5 0 (47) 

(A-1)41  = 1460 (48) 

and 

whenever r is large and /I4 << 1 .  
(ii) ‘Inner’ region. Set Z-’ = C/r2 ,  1 = p JC. Then 

(A-A2-u)4  = 144 (49) 

( A - A ’ - - U ) + ~  = 0 (50) 

(A-J.’-u)K = -6  (51) 
where 

t‘ = 4/z6 + 4/z4 
and 

-4  cos e 
4 =  23  . 

(A - ~ ) 4  2 (2’ + i4)(40 - E.Kq#Jo + . . .) 
As in (i), we may write 

(52) 
where the right-hand side may be considered a perturbation expansion in the external 
field strength. In practice, our lowest-order approximation (for small r )  will be given by 
4 5 $ o + ~ l  where 

( A - u ) + ~  ‘V 0 (49W 

(A - u)4 1 = 440( 0). (52b) 

and 
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One can therefore solve (47), (48), (49b) and (52b) and match the resulting densities and 
(radial) current densities on a circle of radius r ,  ( r ,  is yet to be determined). 

4. Lowest-order approximation 

Fortunately the lowest-order equations for 4, and 4, do not lead to results essentially 
different from those given by the first two terms in the improper expansion discussed 
earlier in § 3. Since the labour has already been performed for this latter case (McCauley 
1972), we turn to the presentation of results. 

(i) Steady state: (a) outer region 

f 2 e-"( l+g,)  

( A + V U , .  V)g, = VU,,  VU,. 

The result is 

where I, and K ,  are Bessel functions of imaginary argument (Whittaker and Watson 
1963) and n, is a sum of products of various combinations of I,,  K ,  and inverse powers 
of r (McCauley 1972). 

(h )  Inner region 

f z e-'(e-"'+g,), 

Ag ,+V.g ,VU,  = 0 (29b) 

and 

where the W+,m,2(2~/r2) are Whittaker functions regular at the origin (bo = 0 since there 
is no source or sink at the origin). For a4 << 1, it is sufficient to match only a few Fourier 
coefficients at r = r, .  In practice, the lowest-order approximation is given by the first 
three (McCauley 1972). Since dv/dt must vanish (detailed balancing), we calculate 

dv 
- K b, cc (4C-ri)P' 
dt ( 5 5 )  

and find our matching condition to be 

rm c 4 = 2JC ( 5 6 )  
to lowest order. The radius 4 gives the minimum of the zero-field probability density 
r e-"' and is known in the theory of electrolytes as the 'Bjerrum radius' (Onsager 1934). 
For p = 0, we see that the vortex dominates for r < q while diffusion dominates for r > q.  
For larger fields, r ,  will depend upon PJC. It is this 'Bjerrum radius' and not the 
Kramers saddle-point which determines capture and escape in weak fields. 

Since r ( E )  = 1 +a,, we have 

(K(E)v(O))- c a(E) 5 1 - 2/?'~(1n p4)' -4j2Cy' In /?q- ~ B ' c  1 (57) 

( - j l '  = 0.1159). 



212 J McCauley Jr and L Onsager 

Hence, the E dependence of the trapping lifetime will be given entirely by A(E) for weak 
fields. 

(ii) Capture: (a)  outer region : 

f =  l + f I  (30b) 

(A+Vu, .V) f1  = -Au,. (32) 

Settingf, - U ,  = g, ,  we once more obtain (25). 

(b)  Inner region: 

f z  eCUfg, 
and 

Matching the first three Fourier coefficients yields 

uo - y‘- In pq 
1 -u,(q) - 312 bo = - 

0.577 -In pq 

where uo = e-”v(q)J: euv/r dr and - 4 4 )  = 2C/q2 = f. Since 

the capture cross section is given by 

2nb0 
a=3- 

and the trapping lifetime is 

We will see in I1 that (62) and (63) do a good job of explaining the field dependence of 
both CT and T. Note that T and (Ea)-’ have the same field dependence. This fact will be 
used to determine which of two contradictory sets of cross section data is likely to be 
closer to the truth. 

5. Summary 

We have applied the general theory of Brownian motion (Onsager 1934) to the calcu- 
lation of the capture cross section and trapping lifetime in the limit of weak external 
fields. We have proposed a systematic perturbation expansion in the weak-field para- 
meter p4 (pq << 1) as a generalization of the technique suggested in a similar context by 
Onsager and Liu (1965), and have derived results to first order in Pq, representing the 
limit E + 0. 

Regarding the trapping lifetime, the theory previously employed in analysing the 
experimental data (Donnelly and Roberts 1969, Donnelly 1967, Pratt and Zimmerman 
1969) is based upon Kramers’ theory of escape over a saddle-point, which theory we 
have observed to be valid only in the limit E + CO if the dimensionality is greater than 
one. In contrast, we find the experimental data to be described by the limit E + 0 
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(McCauley and Onsager 1975), while the zero-field lifetime is actually infinite. Our 
calculation of the capture cross section is based upon the recognition that a Brownian 
particle may be considered trapped whenever the thermal kinetic energy is dominated 
by the interaction energy, so long as the external field is sufficiently weak (Onsager 1934). 

These results will be used in a future communication to analyse and discuss the 
available experimental data (McCauley and Onsager 1975). 
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